A Nondestructive Technique for the Evaluation of Thin Cylindrical Shells' Axial Buckling Capacity
نویسندگان
چکیده
Abstract The axial buckling capacity of a thin cylindrical shell depends on the shape and size imperfections that are present in it. Therefore, prediction shells is difficult, expensive, time consuming, if not impossible, because requires priori knowledge about imperfections. As result, designed conservatively using knockdown factor approach accommodates uncertainties associated with shells; almost all design codes follow this explicitly or implicitly. A novel procedure proposed for accurate without measuring based probing axially loaded shells. Computational experimental implementation yields results when done location highest imperfection amplitude. However, overpredicts away from point. This study demonstrates crucial role played by shows imperfect cylinders possible at proper location.
منابع مشابه
Dynamic buckling of thin cylindrical shells under axial impact
The dynamic buckling of thin isotropic thermoviscoplastic cylindrical shells compressed with a uniform axial velocity prescribed at the end faces is investigated analytically and numerically. In the first part of the paper, the stressed/deformed state of a shell is assumed to have buckled if infinitesimal perturbations superimposed upon it grow. Cubic algebraic equations are derived for both th...
متن کاملInvestigation of Axial to Lateral Load ratio on the Buckling of Thin Orthotropic Cylindrical Shells
Buckling analysis of thin cylindrical shells is very important due to their production process. Usually longitudinal and transversal stiffeners are used to increase the buckling stiffness. In this paper, considering a thin cylindrical shell with longitudinal and transversal ribs subjected to axial force and lateral pressure, the influence of different aspect of axial force to lateral pressure ...
متن کاملBuckling of Stiffened Thin-Walled Cylindrical Shells under Axial Compression with Symmetrical Imperfections
This study aimed to investigate the effects of stiffeners on buckling of thin cylindrical shells under uniform axial compression. To this end, more than 300 finite element models of stiffened cylindrical shells were prepared. The variables considered are shell thickness, number, dimension and the location of the vertical and horizontal stiffeners as well as circular symmetrical imperfections. R...
متن کاملNeural Prediction of Buckling Capacity of Stiffened Cylindrical Shells
Estimation of the nonlinear buckling capacity of thin walled shells is one of the most important aspects of structural mechanics. In this study the axial buckling load of 132 stiffened shells were numerically calculated. The applicability of artificial neural networks (ANN) in predicting the buckling capacity of vertically stiffened shells was studied. To this end feed forward (FF) multi-layer ...
متن کاملBuckling of cracked cylindrical thin shells under combined internal pressure and axial compression
Linear eigenvalue analysis of cracked cylindrical shells under combined internal pressure and axial compression is carried out to study the effect of crack type, size and orientation on the buckling behavior of cylindrical thin shells. Two types of crack are considered; through crack and thumbnail crack. Our calculations indicate that depending on the crack type, length, orientation and the int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mechanics
سال: 2021
ISSN: ['0021-8936', '1528-9036']
DOI: https://doi.org/10.1115/1.4049806